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Abstract
We present an overview of the problem of screening of an impurity in a strongly
coupled one-component plasma within the framework of the linear response
(LR) theory. We consider 3D, 2D and quasi-2D layered systems. For a
strongly coupled plasma the LR can be determined by way of the known S(k)

structure functions. In general, an oscillating screening potential with local
overscreening and antiscreening regions emerges. In the case of the bilayer,
this phenomenon becomes global, as overscreening develops in the layer of
the impurity and antiscreening in the adjacent layer. We comment on the
limitations of the LR theory in the strong coupling situation.

PACS numbers: 52.27.Gr, 68.65.Ac

1. Introduction

A large variety of condensed matter systems can be described as strongly coupled Coulomb
systems. Examples are quantum wells and quantum dots in semiconductors, liquid metals,
electrolytes, interiors of giant planets, white dwarfs etc. In a somewhat different setting,
they also occur in dusty plasmas and charged colloids. This paper reviews and extends
the information on the linear screening of an impurity ρext = Zeδ(r) in various strongly
coupled classical plasma systems. The term ‘linear screening’ indicates that the screening
is determined via linear response theory (LR). Even when the plasma is strongly coupled,
the coupling between the impurity may be weak or strong, depending on the charge Z of the
impurity. In the former case the linear response theory should be adequate. The latter case is
largely unexplored: one may introduce an effective potential [1–3], or, more reliably, resort to
studying, either analytically or by computer simulation, impurity-plasma correlation functions
in the ρext → 0 limit.

An improvement over the linear response theory could be provided by quadratic screening
theory, which, however, has been analysed for weak coupling only [4–6]. The systems we
consider are the three-dimensional (3D) one-component plasma (OCP), the 2D OCP and the
OCP bilayer. While the basic features of the screening in 3D and 2D plasmas have been well
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known for a long time, the details of the screening for strong coupling have not been displayed.
The issue of bilayers is fairly new (for references see [7]) and even the weak coupling analysis
was only recently done [8]. Both the weak coupling and strong coupling scenarios exhibit
some unexpected physical features.

The screening will be described in terms of the induced polarization density ρpol ≡ ρ

and the resulting total (screened) potential �tot. A parameter used in all cases is the plasma
coupling parameter, which corresponds to the ratio of Coulomb energy to kinetic energy.
For a system consisting of classical charged particles, the classical coupling parameter is
� = Z0

2e2/(akBT ), where a is the Wigner–Seitz radius and Z0 is the charge of the plasma
particles. The screening is generated through the polarization charge density of the medium
that we assume to consist of particles of positive unit charge. The interaction potential (note
that ‘potential’ is used here to designate potential energy) between the plasma particles is ϕ(r)
or its Fourier transform ϕ(k). We take an impurity charge of Z = −1 (within the linear theory
the sign of the charge is actually irrelevant and all the results scale with |Z|).

2. 3D strongly coupled OCP

In the model of the classical 3D OCP, a single species of particles is immersed in a neutralizing
background. Its Wigner–Seitz radius is a = (4nπ/3)−1/3 and the traditional coupling
parameter γ is related to � as γ 2 = 3�3. The interaction potential is ϕ(k) = 4πe2/k2.
Then

ρ(k) = χ(k)ϕ(k)ρext(k) = −χ(k)ϕ(k). (1)

The full (screened) density response function χ(k) can be linked to the structure function
S(k) that has been available both through HNC calculations [9] and through Monte Carlo
simulations [10] via the classical fluctuation–dissipation theorem (FDT)

S(k) = − 1

βn
χ(k) (2)

whence the polarization density becomes

ρ(k) = S(k)
κ2

3D

k2
(3)

(κ2
3D = 4πe2n is the 3D Debye wave number). The polarization potential �pol(k) and the

total (screened) potential �tot(k) are

�pol(k) = ϕ(k)ρ(k) = ϕ(k)
κ2

3D

k2
S(k) (4)

�tot(k) = �pol(k) + �ext(k)

= −ϕ(k) [1 − ρ(k)] = −ϕ(k) [1 − βnϕ(k)S(k)] (5)

where �ext(k) is the external potential due solely to the impurity.
The behaviour of �tot(r) is nonmonotonic, with local screening and antiscreening regions.

Thus, a positive impurity would cause the total potential �tot(r) to become locally negative
(see figures 1 and 2); such negative regions would correspond to strong attractive interaction
between like particles. Asymptotically, for r → ∞, the total potential is well known to drop
off as e−κr/r . At r = 0 the polarization potential assumes a finite value

�pol(r = 0) = −e2

a

2

π

∫
dk̄

κ2
3D

k̄2
S(k) (6)

which, in contrast to the Debye result, is, in general, different from twice the correlation energy
per particle. (Here and in the following the notation k̄ = ka is used.)
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Figure 1. Polarization density ρ(r), in units of equilibrium density n, for 2D and 3D systems for
various � values.
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Figure 2. 3D and 2D �tot(r), in units of e2/a. The potentials oscillate with alternating sign,
indicating the overscreening and antiscreening regions.

3. 2D strongly coupled OCP

Proceeding the same way as in the preceding section, we now examine a classical 2D OCP.
The Wigner–Seitz radius is a = 1/

√
πn and the traditional plasma parameter γ is related to

� as γ = 2�2. The 2D interaction potential is ϕ(k) = 2πe2/k. Similarly to the 3D case, the
structure function S(k) is available both through HNC calculations [11] and through computer
simulations [11, 12]. The polarization density now is

ρ(k) = S(k)
κ2D

k
(7)

(κ2D = 2πe2n/(kBT ) is the 2D Debye wave number). With the appropriate change in ϕ(k),
the expressions for the polarization potential �pol(r) and the total (screened) potential �tot(r)

are similar to those in the 3D case.
As in the 3D OCP, �tot(r) exhibits a strong oscillatory behaviour (see figures 1 and 2).

Remarkably, however, as shown in figure 3(a), the oscillation amplitudes for comparable
� values are considerably higher in 2D than in 3D. Asymptotically, for r → ∞, the total
potential drops off as 1/r3, since the polarization charge and the impurity charge form a
quadrupole-like distribution of charge. At r = 0 the polarization potential is now given by the
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Figure 3. (a) Comparison of the amplitudes of the first peak of �tot(r) for 2D and 3D. The
oscillations in 2D are much more pronounced. (b) Second layer polarization potential �pol,2 at
r = 0, as a function of interlayer distance d for � = 20 (units are the same as in figures 1 and 2).

unphysical logarithmically divergent integral

�pol(r = 0) = −e2

a

∫
dk̄

κ2D

k̄
S (k) . (8)

The correlation energy is, of course, finite.

4. Strongly coupled classical bilayers

The bilayer model we consider consists of two 2D layers of positively charged particles,
separated by a distance d, of equal areal densities n and immersed in an oppositely charged
neutralizing background. The impurity of charge Z = −1 is placed on layer 1. While in
the weak coupling regime, � < 1, the random-phase approximation (RPA) is adequate in
describing such systems (for a complete weak coupling description see [8]), at higher � values
the RPA is no longer satisfactory. The results presented here rely on recent classical HNC
generated structure functions [13, 14], corroborated by molecular dynamics simulations [15].
The interaction potential matrix is

ϕ(k) =
[

ϕ11 ϕ12

ϕ21 ϕ22

]
= ϕ(k)

[
1 e−kd

e−kd 1

]
(9)

ϕ(k) = 2πe2

k
. The polarization densities ensue now from the matrix relation

ρi(k) = −χij (k)ϕj1(k). (10)

The corresponding classical fluctuation dissipation theorem leads to

ρ1(k) = κ2D

k
[S11(k) + e−kdS12(k)]

(11)
ρ2(k) = κ2D

k
[e−kdS11(k) + S12(k)]

with S11 and S12 the intralayer and interlayer structure functions, respectively. They obey the
Stillinger–Lovett condition, such that S11(k = 0) + S12(k = 0) = 0. The total charges on each
layer are ρ1(k = 0) − 1 and ρ2(k = 0), respectively. Thence, the perfect screening sum rule
requires that

ρ1(k = 0) + ρ2(k = 0) = +1. (12)
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Figure 4. ρ1(k = 0) and ρ2(k = 0) as a function of d for � = 20. Note that ρ2 changes sign for
very small d.
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Figure 5. Polarization density ρ(r), in units of equilibrium density n, and total (screened) potential
�tot(r), in units of e2/a, for layer 2 of a bilayer for � = 20.

The remarkable feature of the bilayer system is that in the strong coupling situation, while the
requirement (12) is observed, each layer develops excess charges; layer 1 overscreens and, to
compensate, layer 2 antiscreens the impurity charge [14]. The amount of the total polarization
charges in the respective layers is dictated by the generalized compressibility sum rule [7]:

ρ1(k = 0) = −1

2

L − N + 4�d̄

L − N + 2�d̄ (13)
ρ2(k = 0) = 1

2

L − N

L − N + 2�d̄

where d̄ = d/a, and Lij = [∂Pi/∂nj]T

[∂P0/∂n]T
, and L = L11 = L22, N = L12 = L21 are the direct-

and trans-inverse compressibility coefficients. For weak coupling both ρ1 and ρ2 are positive;
in contrast, for strong coupling ρ2 changes sign, and both ρ1 and ρ2 reach a sharp maximum
(minimum) at a small d̄ value (figure 4). The detailed charge distributions in the second layer
is portrayed in figure 5. The corresponding total (screened) potential is given by

�tot,1(k) = −ϕ(k)
{

1 +
κ2D

k
[(e−kd + 1)S11(k) + 2 e−kdS12(k)]

}
(14)

�tot,2(k) = −ϕ(k)
{

e−kd +
κ2D

k
[2 e−kdS11(k) + (e−kd + 1)S12(k)]

}
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and is portrayed in figure 5. At r = 0, the behaviour of the polarization potential in layer 1 is
similar to that of a 2D system, with the unphysical logarithmically divergent value. In layer 2,
the polarization potential at r = 0 is finite and changes sign from positive to negative at a small
d̄ value, as shown in figure 3(b). An interesting and counterintuitive feature of the polarization
potential at an arbitrary r �= 0 is that it is a nonmonotonic function of the layer separation d.
This has been demonstrated only for weak coupling [8], but it is expected to be the general
feature inherent to layered systems.

5. Conclusions

The limitations of the linear response theory in the strong coupling situation are not well
understood. However, from the results presented in this paper, it is probably safe to conclude
that when the impurity charge is of the order of the charge of the plasma particles, the LR
results are mostly unphysical. One easily available test is provided by assuming that the
impurity is one of the plasma particles and then to compare the polarization density calculated
from LR with the correlation density ρ̄ around the ‘impurity’, as given by the equilibrium
pair correlation function ρ̄(k) = (S − I) · ρext(k). The corresponding LR expression is
ρ(k) = χ(k) · ϕ(k) · ρext(k) and we see that strict equality ρ̄ = ρ requires that χ satisfy the
relation

χ(k) = − βnI
I + βnϕ(k)

(15)

(I is the unit matrix). This is tantamount to the Debye description of weak coupling. Even
though ρ and ρ̄ are conceptually not quite identical (in one case the ‘impurity’ is thermally
excited, in the other it is held at rest), the result can be taken as an indication that the
linear response theory does not adequately describe scenarios where the coupling between
the impurity and the plasma is of strength comparable to the coupling within the plasma. The
situation can be quite different when the impurity charge Z is much smaller than the charge
of the plasma particles Z0. In this case, the LR theory is expected to provide a reasonable
rendition of the novel physical effects brought about by the strong coupling, such as the strong
oscillatory behaviour of the screened potential and the global overscreening/antiscreening
behaviour in bilayer systems. A low Z/Z0, high � situation may be realized in highly charged
colloidal or complex (dusty) plasma systems. Preliminary results of molecular dynamics
(MD) simulations [16] seem to corroborate the predictions of the LR theory for such systems.
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